Almost all cop-win graphs contain a universal vertex

Graeme Kemkes
Ryerson University
(Joint work with Anthony Bonato and Paweł Prałat)

May 2011
The game of cops and robbers

The cop wins.
The game of cops and robbers

Cops and robbers is a two-player game played on a graph:

1. Cop C chooses vertex.
2. Robber R chooses vertex.
3. C moves along an edge (or passes).
4. R moves along an edge (or passes).
5. Repeat Steps 3 and 4.

C wins if C moves onto R. Otherwise, R wins.
The game of cops and robbers

One cop cannot necessarily win...

C

R

The **cop number** $c(G)$ is the minimum number of cops needed to guarantee that the cops win.
The game of cops and robbers

For a path P_n...

For a cycle C_n...

For a tree T...
The game of cops and robbers

For a path P_n...
$c(P_n) = 1$

For a cycle C_n...
$c(C_n) = 2$, $n \geq 4$

For a tree T...
$c(T) = 1$
The game of cops and robbers

Conjecture [Meyniel ’85]:
For connected \(n \)-vertex graphs \(G \),

\[
c(G) \leq O(\sqrt{n}).
\]

Results

- [Frankl ’87] \(c(G) \leq O \left(\frac{n}{\log n / \log \log n} \right) \)
- [Chiniforooshan ’08] \(c(G) \leq O \left(\frac{n}{\log n} \right) \)
- [Frieze et al ’11+, Lu-Peng ’11+, Scott-Sudakov ’11+] \(c(G) \leq O \left(\frac{n}{2^{(1-o(1))\sqrt{\log_2 n}}} \right) \)
The game of cops and robbers

Conjecture [Meyniel ’85]:
For connected n-vertex graphs G, $c(G) \leq O(\sqrt{n})$.

Results

- [Prałat ’10] There are graphs with $c(G) \geq d\sqrt{n}$.
The game of cops and robbers

C & R introduction [Nowakowski & Winkler ’83, Quilliot ’78]

C & R on special graphs
 ▶ planar [Aigner & Fromme ’84]
 ▶ product graphs [Neufeld & Nowakowski ’98]
 ▶ infinite [Hahn et al ’02]

C & R with modified rules
 ▶ limited visibility [Isler ’08]
 ▶ alarms [Clarke et al ’06]

Related games
 ▶ firefighting [Hartnell ’95]
 ▶ seepage [Clarke et al ’11+]
The game of cops and robbers

C & R introduction [Nowakowski & Winkler ’83, Quilliot ’78]
C & R on special graphs
 ▶ planar [Aigner & Fromme ’84]
 ▶ product graphs [Neufeld & Nowakowski ’98]
 ▶ infinite [Hahn et al ’02]
C & R with modified rules
 ▶ limited visibility [Isler ’08]
 ▶ alarms [Clarke et al ’06]
Related games
 ▶ firefighting [Hartnell ’95]
 ▶ seepage [Clarke et al ’11+]
The game of cops and robbers

C & R introduction [Nowakowski & Winkler ’83, Quilliot ’78]
C & R on special graphs
 ▶ planar [Aigner & Fromme ’84]
 ▶ product graphs [Neufeld & Nowakowski ’98]
 ▶ infinite [Hahn et al ’02]
C & R with modified rules
 ▶ limited visibility [Isler ’08]
 ▶ alarms [Clarke et al ’06]

Related games
 ▶ firefighting [Hartnell ’95]
 ▶ seepage [Clarke et al ’11+]
The game of cops and robbers

C & R introduction [Nowakowski & Winkler ’83, Quilliot ’78]

C & R on special graphs
 ▶ planar [Aigner & Fromme ’84]
 ▶ product graphs [Neufeld & Nowakowski ’98]
 ▶ infinite [Hahn et al ’02]

C & R with modified rules
 ▶ limited visibility [Isler ’08]
 ▶ alarms [Clarke et al ’06]

Related games
 ▶ firefighting [Hartnell ’95]
 ▶ seepage [Clarke et al ’11+]
G is cop-win if \(c(G) = 1 \).

\(C_n \) = the set of cop-win graphs on \(n \) labelled vertices

Questions:

\[|C_n| = ? \]

\[|C_n| = (1 + o(1))f(n) \text{ as } n \text{ grows large} \]
Counting cop-win graphs
A vertex is **universal** if it is adjacent to every other vertex.
Counting cop-win graphs

Let U_n be the set of n-vertex graphs with a universal vertex.

$$|U_n| = n2^{(n-1)/2} + O(n^22^{(n-2)/2}) = (1 + o(1))n2^{(n-1)/2}$$

So

$$|C_n| \geq |U_n| = (1 + o(1))n2^{(n-1)/2}.$$

Surprise! [Bonato, K., Prałat ’11+]:

$$|C_n| = (1 + o(1))n2^{(n-1)/2}.$$

$$\frac{|U_n|}{|C_n|} = 1 + o(1).$$

Almost all cop-win graphs contain a universal vertex.
Counting cop-win graphs

Let $U_n =$ the set of n-vertex graphs with a universal vertex.

$$|U_n| = n2^{\binom{n-1}{2}} + O(n^2 2^{\binom{n-2}{2}}) = (1 + o(1))n2^{\binom{n-1}{2}}$$

So

$$|C_n| \geq |U_n| = (1 + o(1))n2^{\binom{n-1}{2}}.$$

Surprise! [Bonato, K., Prałat ’11+]:

$$|C_n| = (1 + o(1))n2^{\binom{n-1}{2}}.$$

$$\frac{|U_n|}{|C_n|} = 1 + o(1).$$

Almost all cop-win graphs contain a universal vertex.
Counting cop-win graphs

Let \(U_n = \) the set of \(n \)-vertex graphs with a universal vertex.

\[
|U_n| = n2^{\binom{n-1}{2}} + O(n^22^{\binom{n-2}{2}}) = (1 + o(1))n2^{\binom{n-1}{2}}
\]

So

\[
|C_n| \geq |U_n| = (1 + o(1))n2^{\binom{n-1}{2}}.
\]

Surprise! [Bonato, K., Prałat ’11+]:

\[
|C_n| = (1 + o(1))n2^{\binom{n-1}{2}}.
\]

\[
\frac{|U_n|}{|C_n|} = 1 + o(1).
\]

Almost all cop-win graphs contain a universal vertex.
Proving $|C_n| = (1 + o(1))|U_n|$

A vertex u is a corner if $N[u] \subseteq N[v]$ for some vertex v.
Proving $|C_n| = (1 + o(1))|U_n|$

A vertex u is a **corner** if $N[u] \subseteq N[v]$ for some vertex v.

Facts:

- Every cop-win graph has a corner.
- Deleting a corner from a cop-win graph produces a new cop-win graph.
- [Nowakowski and Winkler ’83, Quilliot ’78]: G is cop-win iff some sequence of deleting corners results in a single vertex.
A vertex u is a **corner** if $N[u] \subseteq N[v]$ for some vertex v.

Facts:
- Every cop-win graph has a corner.
- Deleting a corner from a cop-win graph produces a new cop-win graph.
- [Nowakowski and Winkler '83, Quilliot '78]: G is cop-win iff some sequence of deleting corners results in a single vertex.
Proving $|C_n| = (1 + o(1))|U_n|$

A vertex u is a corner if $N[u] \subseteq N[v]$ for some vertex v.

Facts:

- Every cop-win graph has a corner.
- Deleting a corner from a cop-win graph produces a new cop-win graph.
- [Nowakowski and Winkler ’83, Quilliot ’78]: G is cop-win iff some sequence of deleting corners results in a single vertex.
A vertex u is a corner if $N[u] \subseteq N[v]$ for some vertex v. Facts:

- Every cop-win graph has a corner.
- Deleting a corner from a cop-win graph produces a new cop-win graph.
- [Nowakowski and Winkler ’83, Quilliot ’78]: G is cop-win iff some sequence of deleting corners results in a single vertex.
Proving $|C_n| = (1 + o(1))|U_n|$

u corner: $N[u] \subseteq N[v]$
Proving $|C_n| = (1 + o(1))|U_n|$

u corner: $N[u] \subseteq N[v]$
Proving $|C_n| = (1 + o(1))|U_n|$

u corner: $N[u] \subseteq N[v]$
Proving $|C_n| = (1 + o(1))|U_n|$

u corner: $N[u] \subseteq N[v]$
Proving $|C_n| = (1 + o(1))|U_n|$

u corner: $N[u] \subseteq N[v]$
Proving $|C_n| = (1 + o(1))|U_n|$
For all sequences

\[u_1, u_2, \ldots, u_n \]

\[v_1, v_2, \ldots, v_n \]

count all graphs with \(N[u_i] \subseteq N[v_i] \) that have no universal vertex.

Show that the number of these graphs is small.

Show that the probability of these graphs is small.
For all sequences
\[u_1, u_2, \ldots, u_n \]
\[v_1, v_2, \ldots, v_n \]
count all graphs with \(N[u_i] \subseteq N[v_i] \) that have no universal vertex.

Show that the number of these graphs is small. Show that the probability of these graphs is small.
Proving $|C_n| = (1 + o(1))|U_n|$

Random model: each pair of vertices is joined by an edge with probability $1/2$.

- Choose the first cn vertices in this sequence.
- $s = \text{number of distinct } v_i$. Number of choices is $\binom{n}{cn} \binom{n}{s} s^{cn}$.
- Probability that $N[u_i] \subseteq N[v_i]$ is at most $(3/4)^{n-2cn}$.
- These events are independent for at least $s/2$ choices of i.

Also condition on degrees of v_i.
Random model: each pair of vertices is joined by an edge with probability $1/2$.

- Choose the first cn vertices in this sequence.
- $s = \text{number of distinct } v_i$. Number of choices is $\binom{n}{cn} \binom{n}{s} s^{cn}$.
- Probability that $N[u_i] \subseteq N[v_i]$ is at most $(3/4)^{n-2cn}$.
- These events are independent for at least $s/2$ choices of i.

Also condition on degrees of v_i.

Proving $|C_n| = (1 + o(1))|U_n|$
Proving $|C_n| = (1 + o(1))|U_n|$

Random model: each pair of vertices is joined by an edge with probability $1/2$.

- Choose the first cn vertices in this sequence.
- $s = \text{number of distinct } v_i$. Number of choices is $\binom{n}{cn} \binom{n}{s} s^{cn}$.
- Probability that $N[u_i] \subseteq N[v_i]$ is at most $(3/4)^{n-2cn}$.
- These events are independent for at least $s/2$ choices of i.

Also condition on degrees of v_i.
Proving $|C_n| = (1 + o(1))|U_n|$
Proving $|C_n| = (1 + o(1))|U_n|$

Random model: each pair of vertices is joined by an edge with probability $1/2$.

- Choose the first cn vertices in this sequence.
- $s = \text{number of distinct } v_i$. Number of choices is $\binom{n}{cn} \binom{n}{s} s^{cn}$.
- Probability that $N[u_i] \subseteq N[v_i]$ is at most $(3/4)^{n-2cn}$.
- These events are independent for at least $s/2$ choices of i.

Also condition on degrees of v_i.
Let $C_n^{(k)}$ be the set of all n-vertex k-cop-win graphs. $|C_n^{(k)}| = ?$

Conjecture: almost all k-cop-win graphs contain a k-vertex dominating set.

Corollary:

$$|C_n^{(k)}| = 2^{o(n)}(2^k - 1)^{n-k}2^{\binom{n-k}{2}}.$$

[Aigner-Fromme ’84] $c(G) \leq 3$ for G planar.

Question: Which of these require 1, 2, or 3 cops?
Open problems

Let $C_n^{(k)}$ be the set of all n-vertex k-cop-win graphs. $|C_n^{(k)}| = ?$

Conjecture: almost all k-cop-win graphs contain a k-vertex dominating set.

Corollary:

$$|C_n^{(k)}| = 2^{o(n)}(2^k - 1)^{n-k}2^{n-k}.$$

[Aigner-Fromme ‘84] $c(G) \leq 3$ for G planar.

Question: Which of these require 1, 2, or 3 cops?
Open problems

Let $C_n^{(k)}$ be the set of all n-vertex k-cop-win graphs. $|C_n^{(k)}| = ?$

Conjecture: almost all k-cop-win graphs contain a k-vertex dominating set.

Corollary:

$$|C_n^{(k)}| = 2^{o(n)}(2^k - 1)^{n-k}2^{\binom{n-k}{2}}.$$

[Aigner-Fromme ’84] $c(G) \leq 3$ for G planar.

Question: Which of these require 1, 2, or 3 cops?